Catalysis of Protein Folding by Chaperones Accelerates Evolutionary Dynamics in Adapting Cell Populations

نویسندگان

  • Murat Çetinbas
  • Eugene I. Shakhnovich
چکیده

Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is catalytic activity of chaperones a selectable trait for the emergence of heat shock response?

Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of ...

متن کامل

GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding

The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire s...

متن کامل

Catalysis of protein folding by cyclophilins from different species.

Cyclophilins are a class of ubiquitous proteins with yet unknown function. They were originally discovered as the major binding proteins for the immunosuppressant cyclosporin A. The only known catalytic function of these proteins in vitro is the cis/trans isomerization of Xaa-Pro bonds in oligopeptides. This became clear after the discovery that bovine cyclophilin is identical with porcine prol...

متن کامل

Protein folding in the cell: challenges and progress.

It is hard to imagine a more extreme contrast than that between the dilute solutions used for in vitro studies of protein folding and the crowded, compartmentalized, sticky, spatially inhomogeneous interior of a cell. This review highlights recent research exploring protein folding in the cell with a focus on issues that are generally not relevant to in vitro studies of protein folding, such as...

متن کامل

DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes

Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013